iSoLFAttractivePotential #
iSoLFAttractive attractive part of the iSoLF potential for coarse-grained lipids developed by the following paper.
- Diego Ugarte La Torre and Shoji Takada (2020) J. Chem. Phys 153, 205101
Example #
[[forcefields.global]]
interaction = "Pair"
potential = "iSoLFAttractive"
ignore.particles_within = {bond = 1, angle = 1}
ignore.group.inter = [
["T1", "T3"]
]
spatial_partition = {type = "CellList", margin = 0.5}
env.popc_epsilon = 0.416
env.popc_omega = 9.867
env.popc_sigma_T = 7.111
parameters = [
{index = 2, sigma = "popc_sigma_T", epsilon = "popc_epsilon", omega = "popc_omega"},
{index = 3, sigma = "popc_sigma_T", epsilon = "popc_epsilon", omega = "popc_omega"},
{index = 4, sigma = "popc_sigma_T", epsilon = "popc_epsilon", omega = "popc_omega"},
{index = 7, sigma = "popc_sigma_T", epsilon = "popc_epsilon", omega = "popc_omega"},
{index = 8, sigma = "popc_sigma_T", epsilon = "popc_epsilon", omega = "popc_omega"},
{index = 9, sigma = "popc_sigma_T", epsilon = "popc_epsilon", omega = "popc_omega"},
# ...
]
Input Reference #
To calculate \( \sigma \) , \( \epsilon \) and \( \omega \) for each pair, Lorentz-Berthelot combining rules are used.
\[\sigma_{ij} = \frac{\sigma_i + \sigma_j}{2} \\ \epsilon_{ij} = \sqrt{\epsilon_i\epsilon_j} \\ \omega_{ij} = \frac{\omega_i\omega_j}{2}\]index
: Integer- The index of the particle.
offset
: Integer (optional. By default, 0.)- Offset value of the index.
sigma
: Floating- It determines the effective particle size.
epsilon
: Floating- It determines the strength of the potential.
omega
: Floating- It determines the width of the attractive well.
Since this potential becomes exactly 0 at \( r = \sqrt[6]{2}\sigma_{ij} + \omega_{ij} \)
, always this cutoff distance is used. You don’t need to set cutoff
.
For other values, see Pair.